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format. The addition of an imaginary radix point after the MSB forces the numerical 
representation into, what is termed signed-fractional format. Signed-integer and signed-
fractional formats are the representations most often found inside digital signal processing 
(DSP) chips; especially signed-fractional. Most fixed-point, DSP operations are optimised 
for this latter representation. 
 
The Discrete Fourier Transform 
 
The Discrete Fourier Transform was mentioned in an earlier chapter. However, braced as 
we now are with a better understanding of digital signals, it is time to revisit this 
important technique. The Fourier Transform exists because an electrical signal may be 
described just as accurately in two different ways; in the frequency base (or frequency 
domain) and in the time base (or time domain). The Fourier Transform is the analysis tool 
we use to get from the time domain description to a frequency domain description. 
 

 
Figure 7 - In the digital domain, signals are not continuous. Instead they are a 

stream of instantaneous readings of voltage at a vanishingly small instant of time. 
Never be tempted to think of digital samples as a staircase waveform, or be tempted 

to draw lines between the dots which represent the samples as illustrated in (b) 

 
In the digital domain, signals are not continuous as in an analogue circuit, they are said to 
be sampled. As we have seen, signals (from, for example, a microphone) are “snapshots”. 
That’s to say, a stream of contiguous, instantaneous readings of voltage at a vanishingly 
small instant of time (Figure 7a). Never be tempted to think of digital samples as a 
staircase waveform, or be tempted to draw lines between the dots which represent the 
samples as illustrated in Figure 7(b). Despite the fact that you will often see this in 
explanations of digital signals, it is a mistake. That is because there is nothing between the 
samples of a time-sampled signal. It’s not that we don’t know what's between the 
sampling points: there is nothing between the sampling instants. This may seem rather a 
philosophical point, but it’s profoundly important. In the sampled world of digital signals, 
guitar strings snap from one position to another and drum sticks descend onto the drum 
membrane in a series of dislocated movements, each position frozen in time like a movie 
film.  
 
There’s an important corollary here that comes about because of this apparently rather 
arcane notion about digital signals. It is this: the discontinuous time-base in which digital 
signals exist, results in a discontinuous frequency base when these signals are transformed 
to the frequency domain. And that means that, although the Discrete Fourier Transform is 
still a cumbersome tool, it is vastly simplified compared with its continuous cousin 
because, the discrete form of the Fourier Transform can be used to transform a series of 
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discrete, sampled, amplitude points in the time domain into a series of discrete 
frequencies in the frequency domain. It is written like this: 
 

X(m) = n=0 Σ N-1 x(n) e (-j2πnm /N) 
 
Once again, we can use Euler's formula to express the equation like this: 
 

X(m) = n=0 Σ N-1 x(n) [ cos(2πnm /N) -j sin(2πnm /N) ] 
 
where X(m) = the mth DFT output component 
 
m = the index of the DFT output in the frequency base, m = 0, 1, 2, 3,......., (N-1), 
 
x(n)= the sequence of input samples, x(0), x(1), x(2), x(3), etc., 
 
n = the time base index of the input samples, n = 0, 1, 2, 3, 4, ..... (N-1), 
 
j = √-1 , and N = the number of samples of the input sequence and the number of 
frequency points in the DFT output.  
 
The exact frequencies of the different analysis points in the DFT output depend upon the 
sampling rate of the time based signal (fs) and the number of samples included in the 
analysis (N). The fundamental analysis frequency is given by Fs/N and the N frequency 
points are multiples of this frequency (including a multiple of zero, to give a DC term). 
So, if our sampling frequency is 44.1kHz as it is on a CD, and we decide to do a Fourier 
analysis over 16 samples of audio, the precise analysis frequencies will be, 
 

Fs/N = 2.75625 kHz  
 
2.75625 kHz . 0 = 0Hz (DC) 
2.75625 kHz . 1 = 2.75625kHz 
2.75625 kHz . 2 = 5.5125kHz 
2.75625 kHz . 3 = 8.26875kHz 
2.75625 kHz . 4 = 11.025 kHz 
. . . 
. . .  
. . . 
 
2.75625 kHz . 15 = 41.34375kHz 

 
Leakage and Windowing 
 
You may be thinking, it’s all well and good that the DFT allows for the simplification that 
the analysis can be determined by a finite number of calculating steps and produce an 
analysis into a series of discrete frequencies, but real-world signals aren’t that convenient. 
Just because my analysis chooses to represent the first bar of Beethoven’s 5th Symphony 
in sixteen discrete frequencies, doesn’t mean that there are only sixteen frequencies in the 
signal. And you’d be right! 
 
The result of trying to force the real world into the straightjacket of the Discrete Fourier 
Transform is termed, leakage: a signal which falls anywhere but exactly upon the analysis 
frequencies, will “leak” into all the other frequency analysis points. (In DFT terminology, 
the frequency analysis points are termed, frequency bins.) This leakage has the 
characteristic that the analysis leaks more into the nearer bins than those further away, as 
is illustrated in Figure 8. The amount of leakage into neighbouring frequency bins is 
minimised by various techniques. The first is – evidently – to use a finer analysis comb 
and increase the number of samples over which the signal is analysed, thereby closer 
approximating the real frequencies which exist in the original analogue signal. The 
second technique is termed windowing. We already met windowing in relation to the 
explanation of the continuous transform. In terms of the DFT and the minimisation of 
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leakage, the idea of the window function is to force a periodicity on the input sequence so 
that the beginning and end of the analysis window converge gently on a common value. 
 
 

 
Figure 8 - The phenomenon of leakage in the DFT 

 
A practical example 
 
The foregoing may still seem a little arcane. The best way I know to alleviate this feeling, 
is to experiment with a practical DFT. Not only does this demonstrate the principle, it will 
introduce a couple of very important issues regarding the DFT. With this book, I have 
included a simple DFT program as an Excel spreadsheet which is available at 
www.richardbrice.net. Excel is a wonderful program and has all sorts of uses over and 
above a financial analysis tool. Modern implementations of spreadsheets, like Excel, 
include many higher-math functions and very fast graphing tools and are therefore useful 
in many engineering applications. The alternative is to write programs from scratch, 
which is involved and demands greater preparation. Figure 9 illustrates the user interface. 
The program is very simple; it’s an eight-point DFT. This is deliberate: so that the process 
is simple enough to take time to look at the formulae in the cells and see what’s going on. 
 
 

 
Figure 9 - Simple DFT as an Excel spreadsheet 

 
The 8-value input sequence is entered in the yellow box as illustrated in Figure 9. The 
sequence is automatically graphed at the top right-hand of the page. (I’ve broken my own 
rule and “joined the dots” in the time domain presentation. This is technically wrong but - 
when an input function only has eight points – it’s very difficult to see without doing this.) 
The DFT is automatically calculated and presented as a bar-chart in the lower right-hand 
corner of the page. The basis functions are shown boxed at the top of the page and the 
intermediate calculation results are displayed in the blue and salmon coloured areas. In 
this simple spreadsheet, I have only calculated the magnitude of each frequency 
component; not its phase. 
 
It’s illuminating, to try various input-sequences, watch the time-domain display (top right) 
and see the result immediately appear in the frequency domain (bottom right). I have 
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illustrated a few examples below. Firstly (Figure 10), an input which is a perfect sine 
wave at F1 (F1 = 1/N × sample frequency). Note that the analysis illustrates this too, with 
a bar at F1.  
 

 
Figure 10 – Sine wave and it DFT 

 
In the second example (Figure 11) the input was calculated to be F1 + F2/2: the analysis 
confirms this.  
 
 

 
Figure 11 – see text 

 
The third example (Figure 12) has an input sequence which was calculated as the sum of 
F1 + F3: the frequency domain representation confirms this. 
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Figure 12 - see text 

 
By now, I hope you’re thinking, “What's going on at the top of the frequency domain 
representations in each case? Sure, when the input was equivalent to the first basis 
function F1, the result was a bar at F1 (Figure 10), but what about the equally sized bar at 
7F?”  
 
We are back to the ambiguity of digital signals. Although we think of the amplitude 
samples in the time domain as being a continuous function, because they’re usually based 
on the value of some continuous function in the real world (like an audio signal), the 
digital signal is discontinuous and ambiguous. When a single frequency in the analogue 
domain is represented in the sampled domain, its energy exists at the original frequency, 
and as sidebands disposed symmetrically about the sampling frequency and its harmonics. 
We saw this in Figure 2. Then it was a fanciful idea. But look at Figures 11 and 12. Each 
of the examples demonstrates that the spectrum of a signal exists (in the sampled domain) 
both at the original frequencies and as a mirror image, reflected at the sampling frequency 
(8F). Our DFT demonstrates that the phenomenon illustrated in Figure 2 isn’t some 
refined, esoteric idea: the spectrum of a digital signal really does look like this. Its 
frequency is said to be ambiguous and it is only the action of the reconstruction filter 
which resolves this ambiguity. Once again, this demonstrates why analogue signals - 
when represented in the sampled domain - must be limited and never include frequencies 
higher than half the sampling frequency (sometimes called the Nyquist frequency limit). 
When we want to use a DFT to display the frequency of a continuous input function, only 
the first half of the analysis in the spreadsheet is performed and displayed. This cuts down 
the maths by half. 
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Figure 13 - see text 

 
 
Two final examples of the DFT spreadsheet are given in Figure 13 and Figure 14. In the 
first example (Figure 13), the very important input function is 0, 0, 0, 0, 1, 0, 0, 0 is 
transformed. In words, the transform is derived for a single, very short pulse. Note how 
this appears in the frequency domain; as a function in which all discrete frequencies are 
present. We shall come to meet this input function again when we come to look at digital 
filters. 
 
The last example (Figure 14) demonstrates leakage. The input sequence is derived from 
sine 1.5F. Note how the results leak into the adjacent frequency bins. 
 

 
Figure 14 - see text 

 




